CHAPTER

4

INPUT/OUTPUT ORGANIZATION

CHAPTER OBJECTIVES

In this chapter you will learn about:

How program-controlled I/O is performed using polling

The idea of interrupts and the hardware and software needed to
support them

Direct memory access as an 1/O mechanism for high-speed
devices

Data transfer over synchronous and asynchronous buses

The design of I/O interface circuits

Commercial bus standards, in particular the PCI, SCS], and
USB buses

CHAPTER 4 + INPUT/OUTPUT ORGANIZATION

Ore of the basic features of a computer is its ability to exchange data with other de-
vices. This communication capability enables a human operator, for example, to use
a keyboard and a display screen to process text and graphics. We make extensive use
of computers to communicate with other computers over the Internet and access infor-
mation around the globe. In other applications, computers are less visible but equally
important. They are an integral part of home appliances, manufacturing equipment,
transportation systems, banking and point-of-sale terminals. In such applications, input
to a computer may come from a sensor switch, a digital camera, a microphone, or a
fire alarm. Output may be a sound signal to be sent to a speaker or a digitally coded
command to change the speed of a motor, open a valve, or cause a robot to move in
a specified manner. In short, a general-purpose computer should have the ability to
exchange information with a wide range of devices in varying environments.

. Inthis chapter, we will consider in detail various ways in which I/O operations are
performed. First, we will consider the problem from the point of view of the programmer.
Then, we will discuss some of the hardware details associated with buses and I/O
interfaces and introduce some commonly used bus standards.

4.1 ACCESSING VO DEVICES

A simple arrangement to connect I/O devices to a computer is to use a single bus
arrangement, as shown in Figure 4.1. The bus enables all the devices connected to it to
exchange information. Typically, it consists of three sets of lines used to carry address,
data, and control signals. Each I/O device is assigned a unique set of addresses. When the
processor places a particular address on the address lines, the device that recognizes this
address responds to the commands issued on the control lines. The processor requests
either a read or a write operation, and the requested data are transferred over the data
lines. As mentioned in Section 2.7, when /O devices and the memory share the same
address space, the arrangement is called memory-mapped 1/0.

With memory-mapped /O, any machine instruction that can access memory can
be used to transfer data to or from an I/O device. For example, if DATAIN is the address

Processor Memory

Bus

/0 device 1 e 1/0 device n

Figure 4.1 A single-bus structure.

4.1 ACCESSING VO DEVICES

of the input buffer associated with the keyboard, the instruction
Move DATAIN,RO

reads the data from DATAIN and stores them into processor register RO. Similarly, the
instruction

Move RO,DATAOUT

sends the contents of register R0 to location DATAQUT, which may be the output data
buffer of a display unit or a printer.

Most computer systems use memory-mapped 1/O. Some processors have special
In and Out instructions to perform I/O transfers. For example, processors in the Intel
family described in Chapter 3 have special I/O instructions and a separate 16-bit address
space for I/O devices. When building a computer system based on these processors, the
designer has the option of connecting 1/O devices to use the special /O address space
or simply incorporating them as part of the memory address space. The latter approach
is by far the most common as it leads to simpler software. One advantage of a separate
1/O address space is that 1/O devices deal with fewer address lines. Note that a separate
/O address space does not necessarily mean that the I/O address lines are physically
separate from the memory address lines. A special signal on the bus indicates that the
requested read or write transfer is an /O operation. When this signal is asserted, the
memory unit ignores the requested transfer. The /O devices examine the low-order bits
of the address bus to determine whether they should respond.

Figure 4.2 illustrates the hardware required to connect an I/O device to the bus.
The address decoder enables the device to recognize its address when this address
appears on the address lines. The data register holds the data being transferred to or
from the processor. The status register contains information relevant to the operation
of the I/O device. Both the data and status registers are connected to the data bus and

Address lines
Bus { Data lines

Control lines

§ i §

| Address Control Data and i /0

i» decoder [i circuits status registers interface

H

|

Input device

Figure 4.2 1/O interface for an input device.

205

Exomple 4.1

CHAPTER 4 » INPUT/OUTPUT ORGANIZATION

assigned unique addresses. The address decoder, the data and status registers, and the
control circuitry required to coordinate 1/O transfers constitute the device’s interface
circuit.

1/O devices operate at speeds that are vastly different from that of the processor.
When a human operator is entering characters at a keyboard, the processor is capable of
executing millions of instructions between successive character entries. An instruction
that reads a character from the keyboard should be executed only when a character is
available in the input buffer of the keyboard interface. Also, we must make sure that an
input character is read only once.

The basic ideas used for performing input and output operations were introduced
in Section 2.7. For an input device such as a keyboard, a status flag, SIN, is included in
the interface circuit as part of the status register. This flag is set to 1 when a character
is entered at the keyboard and cleared to 0 once this character is read by the processor.
Hence, by checking the SIN flag, the software can ensure that it is always reading valid
data. This is often accomplished in a program loop that repeatedly reads the status
register and checks the state of SIN. When SIN becomes equal to 1, the program reads
the input data register. A similar procedure can be used to control output operations
using an output status flag, SOUT.

To review the basic concepts, let us consider a simple example of /O operations involv-
ing a keyboard and a display device in a computer system. The four registers shown
in Figure 4.3 are used in the data transfer operations. Register STATUS contains two
control flags, SIN and SOUT, which provide status information for the keyboard and
the display unit, respectively. The two flags KIRQ and DIRQ in this register are used
in conjunction with interrupts. They, and the KEN and DEN bits in register CON-
TROL, will be discussed in Section 4.2. Data from the keyboard are made available

DATAIN
DATAOUT

STATUS DIRQ | KIRQ | SOUT | SIN
CONTROL DEN | KEN

7 6 5 4 3 2 1 0

Figure 4.3 Registers in keyboard and display interfaces.

4.1 ACCESSING VO DEVICES

Move #LINE,RO Initialize memory pointer.

WAITK TestBit #0,STATUS Test SIN.
Branch=0 WAITK Wait for character to be entered.
Move DATAIN,R1 Read character.

WAITD TestBit #1,STATUS Test SOUT.
Branch=0 WAITD Wait for display to become ready.
Move R1,DATAOUT Send character to display.
Move R1,(RO)+ Store charater and advance pointer.
Compare #$0D,R1 Check if Carriage Return.
Branch#0 WAITK If not, get another character.
Move #80A,DATAOUT Otherwise, send Line Feed.
Call PROCESS Call a subroutine to process the

the input line.

Figure 4.4 A program that reads one line from the keyboard, stores it in memory buffer,
and echoes it back to the display.

in the DATAIN register, and data sent to the display are stored in the DATAOUT
register.

The program in Figure 4.4 is similar to that in Figure 2.20. This program reads a
line of characters from the keyboard and stores it in a memory buffer starting at location
LINE. Then, it calls a subroutine PROCESS to process the input line. As each character
is read, it is echoed back to the display. Register RO is used as a pointer to the memory
buffer area. The contents of RO are updated using the Autoincrement addressing mode
so that successive characters are stored in successive memory locations.

Each character is checked to see if it is the Carriage Return (CR) character, which
has the ASCII code OD (hex). If it is, a Line Feed character (ASCII code 0A) is
sent to move the cursor one line down on the display and subroutine PROCESS
is called. Otherwisc, the program loops back to wait for another character from the
keyboard.

This example illustrates program-controlled I/0, in which the processor repeatedly
checks a status flag to achieve the required synchronization between the processor and
an input or output device. We say that the processor polls the device. There are two
other commonly used mechanisms for implementing 1/O operations: interrupts and
direct memory access. In the case of interrupts, synchronization is achieved by having
the I/O device send a special signal over the bus whenever it is ready for a data transfer
operation. Direct memory access is a technique used for high-speed 1/O devices. It
involves having the device interface transfer data directly to or from the memory,
without continuous involvement by the processor. We will discuss these mechanisms
in the next three sections. Then, we will examine the hardware involved, which includes
the processor bus and the I/O device interface.

207

Exomple 4.2

CHAPTER 4 » INPUT/OUTPUT ORGANIZATION

4.2 INTERRUPTS

In the example of Figure 4.4, the program enters a wait loop in which it repeatedly
tests the device status. During this period, the processor is not performing any useful
computation. There are many situations where other tasks can be performed while
waiting for an I/O device to become ready. To allow this to happen, we can arrange for
the I/O device to alert the processor when it becomes ready. It can do so by sending
a hardware signal called an interrupt to the processor. At least one of the bus control
lines, called an interrupt-request line, is usually dedicated for this purpose. Since the
processor is no longer required to continuously check the status of external devices, it
can use the waiting period to perform other useful functions. Indeed, by using interrupts,
such waiting periods can ideally be eliminated.

Consider a task that requires some computations to be performed and the results to
be printed on a line printer. This is followed by more computations and output, and
so on. Let the program consist of two routines, COMPUTE and PRINT. Assume that
COMPUTE produces a set of # lines of output, to be printed by the PRINT routine.
The required task may be performed by repeatedly executing first the COMPUTE
routine and then the PRINT routine. The printer accepts only one line of text at a time.
Hence, the PRINT routine must send one line of text, wait for it to be printed, then
send the next line, and so on, until all the results have been printed. The disadvan-
tage of this simple approach is that the processor spends a considerable amount of
time waiting for the printer to become ready. If it is possible to overlap printing and
computation, that is, to execute the COMPUTE routine while printing is in progress, a
faster overall speed of execution will result. This may be achieved as follows. First, the
COMPUTE routine is executed to produce the first n lines of output. Then, the PRINT
routine is executed to send the first line of text to the printer. At this point, instead of
waiting for the line to be printed, the PRINT routine may be temporarily suspended
and execution of the COMPUTE routine continued. Whenever the printer becomes
ready, it alerts the processor by sending an interrupt-request signal. In response, the
processor interrupts execution of the COMPUTE routine and transfers control to the
PRINT routine. The PRINT routine sends the second line to the printer and is again
suspended. Then the interrupted COMPUTE routine resumes execution at the point of
interruption. This process continues until all n lines have been printed and the PRINT

* routine ends.

The PRINT routine will be restarted whenever the next set of n lines is available
for printing. If COMPUTE takes longer to generate n lines than the time required to
print them, the processor will be performing useful computations all the time.

This example illustrates the concept of interrupts. The routine executed in response to
an interrupt request is called the interrupt-service routine, which is the PRINT routine
in our example. Interrupts bear considerable resemblance to subroutine calls. Assume
that an interrupt request arrives during execution of instruction i in Figure 4.5. The

Program 1
COMPUTE routine

4.2 INTERRUPTS

Program 2
PRINT routine

]

2 amm————————"

Interrupt
occurs — .
here

i+1 .

S P

Figure 4.5 Transfer of control -fhrough the use of interrupts.

processor first completes execution of instruction i. Then, it loads the program counter
with the address of the first instruction of the interrupt-service routine. For the time
being, let us assume that this address is hardwired in the processor. After execution
of the interrupt-service routine, the processor has to come back to instruction i + 1.
Therefore, when an interrupt occurs, the current contents of the PC, which point to
instruction i + 1, must be put in temporary storage in a known location. A Return-
from-interrupt instruction at the end of the interrupt-service routine reloads the PC
from that temporary storage location, causing execution to resume at instruction i + 1.
In many processors, the return address is saved on the processor stack. Alternatively, it
may be saved in a special location, such as a register provided for this purpose.

We should note that as part of handling interrupts, the processor must inform the
device that its request has been recognized so that it may remove its interrupt-request
signal. This may be accomplished by means of a special control signal on the bus. An
interrupt-acknowledge signal, used in some of the interrupt schemes to be discussed
later, serves this function. A common alternative is to have the transfer of data between
the processor and the I/O device interface accomplish the same purpose. The execution
of an instruction in the interrupt-service routine that accesses a status or data register
in the device interface implicitly informs the device that its interrupt request has been
recognized.

So far, treatment of an interrupt-service routine is very similar to that of a subroutine.
An important departure from this similarity should be noted. A subroutine performs
a function required by the program from which it is called. However, the interrupt-
service routine may not have anything in common with the program being executed
at the time the interrupt request is received. In fact, the two programs often belong to
different users. Therefore, before starting execution of the interrupt-service routine, any
information that may be altered during the execution of that routine must be saved. This
information must be restored before execution of the interrupted program is resumed.
In this way, the original program can continue execution without being affected in any

210

CHAPTER 4 - INPUT/OUTPUT ORGANIZATION

way by the interruption, except for the time delay. The information that needs to be
saved and restored typically includes the condition code flags and the contents of any
registers used by both the interrupted program and the interrupt-service routine.

The task of saving and restoring information can be done automatically by the
processor or by program instructions. Most modern processors save only the minimum
amount of information needed to maintain the integrity of program execution. This
is because the process of saving and restoring registers involves memory transfers
that increase the total execution time, and hence represent execution overhead. Saving
registers also increases the delay between the time an interrupt request is received and the
start of execution of the interrupt-service routine. This delay is called interrupt latency.
In some applications, a long interrupt latency is unacceptable. For these reasons, the
amount of information saved automatically by the processor when an interrupt request is
accepted should be kept to a minimum. Typically, the processor saves only the contents
of the program counter and the processor status register. Any additional information
that needs to be saved must be saved by program instructions at the beginning of the
interrupt-service routine and restored at the end of the routine.

In some earlier processors, particularly those with a small number of registers,
all registers are saved automatically by the processor hardware at the time an interrupt
request is accepted. The data saved are restored to their respective registers as part of the
execution of the Return-from interrupt instruction. Some computers provide two types
of interrupts. One saves all register contents, and the other does not. A particular /O
device may use either type, depending upon its response-time requirements. Another
interesting approach is to provide duplicate sets of processor registers. In this case, a
different set of registers can be used by the interrupt-service routine, thus eliminating
the need to save and restore registers.

An interrupt is more than a simple mechanism for coordinating I/O transfers. In
a general sense, interrupts enable transfer of control from one program to another to
be initiated by an event external to the computer. Execution of the interrupted program
resumes after the execution of the interrupt-service routine has been completed. The
concept of interrupts is used in operating systems and in many control applications
where processing of certain routines must be accurately timed relative to external
events. The latter type of application is referred to as real-time processing.

4.2.1 INTERRUPT HARDWARE

We pointed out that an I/O device requests an interrupt by activating a bus line called
interrupt-request. Most computers are likely to have several /O devices that can request
an interrupt. A single interrupt-request line may be used to serve n devices as depicted
in Figure 4.6. All devices are connected to the line via switches to ground. To request
an interrupt, a device closes its associated switch. Thus, if all interrupt-request signals
INTR, to INTR, are inactive, that is, if all switches are open, the voltage on the
interrupt-request line will be equal to Vy4. This is the inactive state of the line. When
a device requests an interrupt by closing its switch, the voltage on the line drops to 0,
causing the interrupt-request signal, INTR, received by the processor to go to 1. Since
the closing of one or more switches will cause the line voltage to drop to 0, the value

4.2 INTERRUPTS n

Vi
Processor
R
INTR !
INTR1 INTR2 - INTRn

L

Figure 4.6 An equivalent circuit for an open-drain bus used to implement a common
inferruptrequest line.

of INTR is the logical OR of the requests from individual devices, that is,
INTR = INTR, +--- + INTR,

It is customary to use the complemented form, INTR, to name the interrupt-request
signal on the common line, because this signal is active when in the low-voltage state.

In the electronic implementation of the circuit in Figure 4.6, special gates known as
open-collector (for bipolar circuits) or open-drain (for MOS circuits) are used to drive
the INTR line. The output of an open-collector or an open-drain gate is equivalent to
a switch to ground that is open when the gate’s input is in the 0 state and closed when
it is in the 1 state. The voltage level, hence the logic state, at the output of the gate is
determined by the data applied to all the gates connected to the bus, according to the
equation given above. Resistor R is called a pull-up resistor because it pulls the line
voltage up to the high-voltage state when the switches are open.

4.2.2 ENABLING AND DISABLING INTERRUPTS

The facilities provided in a computer must give the programmer complete control over
the events that take place during program execution. The arrival of an interrupt request
from an external device causes the processor to suspend the execution of one program
and start the execution of another. Because interrupts can arrive at any time, they
may alter the sequence of events from that envisaged by the programmer. Hence, the
interruption of program execution must be carefully controlled. A fundamental facility
found in all computers is the ability to enable and disable such interruptions as desired.
We will now examine this and related facilities in some detail.

There are many situations in which the processor should ignore interrupt requests.
For example, in the case of the Compute-Print program of Figure 4.5, an interrupt
request from the printer should be accepted only if there are output lines to be printed.
After printing the last line of a set of lines, interrupts should be disabled until another
set becomes available for printing. In another case, it may be necessary to guarantee that

212

CHAPTIR 4 INPUT/OUTPUT ORGANIZATION

aparticular sequence of instructions is executed to the end without interruption because
the interrupt-service routine may change some of the data used by the instructions in
question. For these reasons, some means for enabling and disabling interrupts must be
available to the programmer. A simple way is to provide machine instructions, such as
Interrupt-enable and Interrupt-disable, that perform these functions.

Let us consider in detail the specific case of a single interrupt request from one
device. When a device activates the interrupt-request signal, it keeps this signal activated
until it learns that the processor has accepted its request. This means that the interrupt-
request signal will be active during execution of the interrupt-service routine, perhaps
until an instruction is reached that accesses the device in question. It is essential to
ensure that this active request signal does not lead to successive interruptions, causing
the system to enter an infinite loop from which it cannot recover. Several mechanisms
are available to solve this problem. We will describe three possibilities here; other
schemes that can handle more than one interrupting device will be presented later.

The first possibility is to have the processor hardware ignore the interrupt-request
line until the execution of the first instruction of the interrupt-service routine has been
completed. Then, by using an Interrupt-disable instruction as the first instruction in
the interrupt-service routine, the programmer can ensure that no further interruptions
will occur until an Interrupt-enable instruction is executed. Typically, the Interrupt-
enable instruction will be the last instruction in the interrupt-service routine before
the Return-from-interrupt instruction. The processor must guarantee that execution
of the Return-from-interrupt instruction is completed before further interruption can
occur.

The second option, which is suitable for a simple processor with only one interrupt-
request line, is to have the processor automatically disable interrupts before starting

. the execution of the interrupt-service routine. After saving the contents of the PC and

the processor status register (PS) on the stack, the processor performs the equivalent
of executing an Interrupt-disable instruction. It is often the case that one bit in the
PS register, called Interrupt-enable, indicates whether interrupts are enabled. An in-
terrupt request received while this bit is equal to 1 will be accepted. After saving the
contents of the PS on the stack, with the Interrupt-enable bit equal to 1, the processor
clears the Interrupt-enable bit in its PS register, thus disabling further interrupts. When
a Return-from-interrupt instruction is executed, the contents of the PS are restored
from the stack, setting the Interrupt-enable bit back to 1. Hence, interrupts are again
enabled.

In the third option, the processor has a special interrupt-request line for which the
interrupt-handling circuit responds only to the leading edge of the signal. Such a line
is said to be edge-triggered. In this case, the processor will receive only one request,
regardless of how long the line is activated. Hence, there is no danger of multiple
interruptions and no need to explicitly disable interrupt requests from this line.

Before proceeding to study more complex aspects of interrupts, let us summarize
the sequence of events involved in handling an interrupt request from a single device.
Assuming that interrupts are enabled, the following is a typical scenario:

1. The device raises an interrupt request.
2. The processor interrupts the program currently being executed.

4.2 INTERRUPTS

3. Interrupts are disabled by changing the control bits in the PS (except in the case of
edge-triggered interrupts).

4. The device is informed that its request has been recognized, and in response, it
deactivates the interrupt-request signal.

5. The action requested by the interrupt is performed by the interrupt-service routine.

6. Interrupts are enabled and execution of the interrupted program is resumed.

4.2.3 BANDLING MULTIPLE DEVICES

Let us now consider the situation where a number of devices capable of initiating
interrupts are connected to the processor. Because these devices are operationally inde-
pendent, there is no definite order in which they will generate interrupts. For example,
device X may request an interrupt while an interrupt caused by device Y is being ser-
viced, or several devices may request interrupts at exactly the same time. This gives
rise to a number of questions:

1. How can the processor recognize the device requesting an interrupt?

2. Given that different devices are likely to require different interrupt-service routines,
how can the processor obtain the starting address of the appropriate routine in each
case?

3. Should a device be allowed to interrupt the processor while another interrupt is
being serviced?

4. How should two or more simultaneous interrupt requests be handled?

The means by which these problems are resolved vary from one computer to another,
and the approach taken is an important consideration in determining the computer’s
suitability for a given application.

When a request is received over the common interrupt-request line in Figure 4.6,
additional information is needed to identify the particular device that activated the line.
Furthermore, if two devices have activated the line at the same time, it must be possible
to break the tie and select one of the two requests for service. When the interrupt-
service routine for the selected device has been completed, the second request can be
serviced.

The information needed to determine whether a device is requesting an interrupt
is available in its status register. When a device raises an interrupt request, it sets to 1
one of the bits in its status register, which we will call the IRQ bit. For example,
bits KIRQ and DIRQ in Figure 4.3 are the interrupt request bits for the keyboard and
the display, respectively. The simplest way to identify the interrupting device is to have
the interrupt-service routine poll all the I/O devices connected to the bus. The first device
encountered with its IRQ bit set is the device that should be serviced. An appropriate
subroutine is called to provide the requested service.

The polling scheme is easy to implement. Its main disadvantage is the time spent
interrogating the IRQ bits of all the devices that may not be requesting any service. An
alternative approach is to use vectored interrupts, which we describe next.

~

213

214

CHAPTIR 4 » INPUT/OUTPUT ORGANIZATION

Yectored Intecruphy

To reduce the time involved in the polling process, a device requesting an interrupt
may identify itself directly to the processor. Then, the processor can immediately start
executing the corresponding interrupt-service routine. The term vectored interrupts
refers to all interrupt-handling schemes based on this approach.

A device requesting an interrupt can identify itself by sending a special code to
the processor over the bus. This enables the processor to identify individual devices
even if they share a single interrupt-request line. The code supplied by the device may
represent the starting address of the interrupt-service routine for that device. The code
length is typically in the range of 4 to 8 bits. The remainder of the address is supplied by
the processor based on the area in its memory where the addresses for interrupt-service
routines are located.

This arrangement implies that the interrupt-service routine for a given device must
always start at the same location. The programmer can gain some flexibility by storing
in this location an instruction that causes a branch to the appropriate routine. In many
computers, this is done automatically by the interrupt-handling mechanism. The loca-
tion pointed to by the interrupting device is used to store the starting address of the
interrupt-service routine. The processor reads this address, called the interrupt vector,
and loads it into the PC. The interrupt vector may also include a new value for the
processor status register.

In most computers, I/O devices send the interrupt-vector code over the data bus,
using the bus control signals to ensure that devices do not interfere with each other.
When a device sends an interrupt request, the processor may not be ready to receive the
interrupt-vector code immediately. For example, it must first complete the execution of
the current instruction, which may require the use of the bus. There may be further delays
if interrupts happen to be disabled at the time the request is raised. The interrupting
device must wait to put data on the bus only when the processor is ready to receive
it. When the processor is ready to receive the interrupt-vector code, it activates the
interrupt-acknowledge line, INTA. The I/O device responds by sending its interrupt-
vector code and turning off the INTR signal.

Interrupt Nesting

We suggested in Section 4.2.1 that interrupts should be disabled during the execu-
tion of an interrupt-service routine, to ensure that a request from one device will not
cause more than one interruption. The same arrangement is often used when several
devices are involved, in which case execution of a given interrupt-service routine, once
started, always continues to completion before the processor accepts an interrupt re-
quest from a second device. Interrupt-service routines are typically short, and the delay
they may cause is acceptable for most simple devices.

For some devices, however, a long delay in responding to an interrupt request may
lead to erroneous operation. Consider, for example, a computer that keeps track of the
time of day using a real-time clock. This is a device that sends interrupt requests to
the processor at regular intervals. For each of these requests, the processor executes a
short interrupt-service routine to increment a set of counters in the memory that keep
track of time in seconds, minutes, and so on. Proper operation requires that the delay
in responding to an interrupt request from the real-time clock be small in comparison

4.2 INTERRUPTS

with the interval between two successive requests. To ensure that this requirement is
satisfied in the presence of other interrupting devices, it may be necessary to accept an
interrupt request from the clock during the execution of an interrupt-service routine for
another device.

This example suggests that I/O devices should be organized in a priority structure.
An interrupt request from a high-priority device should be accepted while the processor

* is servicing another request from a lower-priority device.

A multiple-level priority organization means that during execution of an interrupt-
service routine, interrupt requests will be accepted from some devices but not from
others, depending upon the device’s priority. To implement this scheme, we can assign
apriority level to the processor that can be changed under program control. The priority
level of the processor is the priority of the program that is currently being executed. The
processor accepts interrupts only from devices that have priorities higher than its own.
At the time the execution of an interrupt-service routine for some device is started, the
priority of the processor is raised to that of the device. This action disables interrupts
from devices at the same level of priority or lower. However, interrupt requests from
higher-priority devices will continue to be accepted.

The processor’s priority is usually encoded in a few bits of the processor status
word. It can be changed by program instructions that write into the PS. These are
privileged instructions, which can be executed only while the processor is running in
the supervisor mode. The processor is in the supervisor mode only when executing
operating system routines. It switches to the user mode before beginning to execute
application programs. Thus, a user program cannot accidentally, or intentionally, change
the priority of the processor and disrupt the system’s operation. An attempt to execute a
privileged instruction while in the user mode leads to a special type of interrupt called
a privilege exception, which we describe in Section 4.2.5.

A multiple-priority scheme can be implemented easily by using separate interrupt-
request and interrupt-acknowledge lines for each device, as shown in Figure 4.7. Each
of the interrupt-request lines is assigned a different priority level. Interrupt requests
received over these lines are sent to a priority arbitration circuit in the processor. A
request is accepted only if it has a higher priority level than that currently assigned to
the processor.

Device 1 Device 2 v Device p

| ______t INTAL INTAp
i s

Priority arbitration
circuit

g l INTR1 INTRp

Figure 4.7 Implementation of interrupt priority using individual inferruptrequest and
acknowledge lines.

215

216

CHAPTER &4 « INPUT/OUTPUT ORGANIZATION

Simuitaneous Requests

Let us now consider the problem of simultaneous arrivals of interrupt requests
from two or more devices. The processor must have some means of deciding which
request to service first. Using a priority scheme such as that of Figure 4.7, the solution is
straightforward. The processor simply accepts the request having the highest priority. If
several devices share one interrupt-request line, as in Figure 4.6, some other mechanism
is needed.

Polling the status registers of the I/O devices is the simplest such mechanism. In this
case, priority is determined by the order in which the devices are polled. When vectored
interrupts are used, we must ensure that only one device is selected to send its interrupt
vector code. A widely used scheme is to connect the devices to form a daisy chain, as
shown in Figure 4.84. The interrupt-request line INTR is common to all devices. The
interrupt-acknowledge line, INTA, is connected in a daisy-chain fashion, such that the
INTA signal propagates serially through the devices. When several devices raise an
interrupt request and the INTR line is activated, the processor responds by setting the
INTA line to 1. This signal is received by device 1. Device 1 passes the signal on to
device 2 only if it does not require any service. If device 1 has a pending request for

N } INTR
g i
]
2
A Device 1 Device2? #— +«+ —»t Device n
INTA
(a) Daisy chain
INTR1
g,\m- T |
! —. Device Device
; g : -1 INTAIL
i . » INTRp
- _
b T - Device Device ——»
| INTAp
Priority arbitration
circuit

(b) Arrangement of priority groups

Figure 4.8 Interrupt priority schemes.

4.2 INTERRUPTS

interrupt, it blocks the INTA signal and proceeds to put its identifying code on the data
lines. Therefore, in the daisy-chain arrangement, the device that is electrically closest
to the processor has the highest priority. The second device along the chain has second
highest priority, and so on.

The scheme in Figure 4.8a requires considerably fewer wires than the individual
connections in Figure 4.7. The main advantage of the scheme in Figure 4.7 is that
it allows the processor to accept interrupt requests from some devices but not from
others, depending upon their priorities. The two schemes may be combined to produce
the more general structure in Figure 4.8b. Devices are organized in groups, and each
group is connected at a different priority level. Within a group, devices are connected
in a daisy chain. This organization is used in many computer systems.

424 CONTROLLING DFVICY REQUESTS

Until now, we have assumed that an I/O device interface generates an interrupt request
whenever it is ready for an 1/O transfer, for example whenever the SIN flag in Figure 4.3
isequal to 1. It is important to ensure that interrupt requests are generated only by those
1/O devices that are being used by a given program. Idle devices must not be allowed to
generate interrupt requests, even though they may be ready to participate in I/O transfer
operations. Hence, we need a mechanism in the interface circuits of individual devices
to control whether a device is allowed to generate an interrupt request.

The control needed is usually provided in the form of an interrupt-enable bit in the
device’s interface circuit. The keyboard interrupt-enable, KEN, and display interrupt-
enable, DEN, flags in register CONTROL in Figure 4.3 perform this function. If ei-
ther of these flags is set, the interface circuit generates an interrupt request whenever
the corresponding status flag in register STATUS is set. At the same time, the in-
terface circuit sets bit KIRQ or DIRQ to indicate that the keyboard or display unit,
respectively, is requesting an interrupt. If an interrupt-enable bit is equal to 0, the
interface circuit will not generate an interrupt request, regardless of the state of the
status flag. '

To summarize, there are two independent mechanisms for controlling interrupt
requests. At the device end, an interrupt-enable bit in a control register determines
whether the device is allowed to generate an interrupt request. At the processor end,
either an interrupt enable bit in the PS register or a priority structure determines whether
a given interrupt request will be accepted.

Consider a processor that uses the vectored interrupt scheme, where the starting address
of the interrupt-service routine is stored at memory location INTVEC. Interrupts are
enabled by setting to 1 an interrupt-enable bit, IE, in the processor status word, which
we assume is bit 9. A keyboard and a display unit connected to this processor have the
status, control, and data registers shown in Figure 4.3.

Assume that at some point in a program called Main we wish to read an input
line from the keyboard and store the characters in successive byte locations in the

217

Exerple 4.3

CHAPTER 4 + INPUT/OUTPUT ORGANIZATION

Main program

MOV EOL,0
MOV BL4
OR CONTROL,BL Set KEN to enable keyboard interrupts.

STI ’ Set interrupt flag in processor register.

Interrupt-service routine

READ PUSH EAX Save register EAX on stack.
PUSH EBX Save register EBX on stack.
MOV EAXPNTR Load address pointer.
MOV BL,DATAIN Get input character.
MOV [EAX],BL Store character.
INC DWORD PTR [EAX] Increment PNTR.
CMP BL,0DH Check if character is CR.
JNE RIRN
MOV BL4
XOR CONTROL,BL Clear bit KEN.
MOV EOL/1 Set EOL flag.

RTRN POP EBX Restore register EBX.
POP EAX Restore register EAX.
IRET

Figure 4.17 An interrupt-servicing routine to read one line from a keyboard using
interrupts on IA-32 processors.

4.4 DIRECT MEMORY ACCESS

The discussion in the previous sections concentrates on data transfer between the pro-
cessor and I/O devices. Data are transferred by executing instructions such as

Move DATAIN,RO

An instruction to transfer input or output data is executed only after the processor
determines that the 1/O device is ready. To do this, the processor either polls a status
flag in the device interface or waits for the device to send an interrupt request. In either
case, considerable overhead is incurred, because several program instructions must be
executed for each data word transferred. In addition to polling the status register of the
device, instructions are needed for incrementing the memory address and keeping track
of the word count. When interrupts are used, there is the additional overhead associated
with saving and restoring the program counter and other state information.

To transfer large blocks of data at high speed, an alternative approach is used.
A special control unit may be provided to allow transfer of a block of data directly

4.4 DIRECT MEMORY ACCESS

between an external device and the main memory, without continuous intervention by
the processor. This approach is called direct memory access, or DMA.

DMA transfers are performed by a control circuit that is part of the /O device
interface. We refer to this circuit as a DMA controller. The DMA controller performs
the functions that would normally be carried out by the processor when accessing the
main memory. For each word transferred, it provides the memory address and all the
bus signals that control data transfer. Since it has to transfer blocks of data, the DMA
controller must increment the memory address for successive words and keep track of
the number of transfers.

Although a DMA controller can transfer data without intervention by the processor,
its operation must be under the control of a program executed by the processor. To initi-
ate the transfer of a block of words, the processor sends the starting address, the number
of words in the block, and the direction of the transfer. On receiving this information,
the DMA controller proceeds to perform the requested operation. When the entire block
has been transferred, the controller informs the processor by raising an interrupt signal.

Whilea DMA transfer s taking place, the program that requested the transfer cannot
continue, and the processor can be used to execute another program. After the DMA
transfer is completed, the processor can return to the program that requested the transfer.

1/O operations are always performed by the operating system of the computer
in response to a request from an application program. The OS is also responsible for
suspending the execution of one program and starting another. Thus, for an I/O operation
involving DMA, the OS puts the program that requested the transfer in the Blocked state
(see Section 4.2.6), initiates the DMA operation, and starts the execution of another
program. When the transfer is completed, the DMA controller informs the processor
by sending an interrupt request. In response, the OS puts the suspended program in the
Runnable state so that it can be selected by the scheduler to continue execution.

Figure 4.18 shows an example of the DMA controller registers that are accessed
by the processor to initiate transfer operations. Two registers are used for storing the

31 30 1 0
Status and control
IRQ —l \ ‘ |— Done
IE R/IW
Starting address
Word count

Figure 4.18 Registers in a DMA interface.

235

CHAPTER & « INPUT/OUTPUT ORGANIZATION

Main
Processor
memory
System bus
Disk/DMA DMA .
controller controller. Printer Keyboard
Disk Disk Network
Interface

~_

Figure 4.19 Use of DMA controllers in a computer system.

starting address and the word count. The third register contains status and control flags.
The R/W bit determines the direction of the transfer. When this bit is set to 1 by a
program instruction, the controller performs a read operation, that is, it transfers data
from the memory to the I/O device. Otherwise, it performs a write operation. When the
controller has completed transferring a block of data and is ready to receive another
command, it sets the Done flag to 1. Bit 30 is the Interrupt-enable flag, IE. When this flag
is setto 1, it causes the controller to raise an interrupt after it has completed transferring
a block of data. Finally, the controller sets the IRQ bit to 1 when it has requested an
interrupt.

An example of a computer system is given in Figure 4.19, showing how DMA
controllers may be used. A DMA controller connects a high-speed network to the
computer bus. The disk controller, which controls two disks, also has DMA capability
and provides two DMA channels. It can perform two independent DMA operations, as if
each disk had its own DMA controller. The registers needed to store the memory address,
the word count, and so on are duplicated, so that one set can be used with each device.

To start a DMA transfer of a block of data from the main memory to one of the
disks, a program writes the address and word count information into the registers of the
corresponding channel of the disk controller. It also provides the disk controller with
information to identify the data for future retrieval. The DMA controller proceeds inde-
pendently to implement the specified operation. When the DMA transfer is completed,
this fact is recorded in the status and control register of the DMA channel by setting the
Done bit. At the same time, if the IE bit is set, the controller sends an interrupt request
to the processor and sets the IRQ bit. The status register can also be used to record
other information, such as whether the transfer took place correctly or errors occurred.

4.4 DIRECT MEMORY ACCESS

Memory accesses by the processor and the DMA controllers are interwoven. Re-
quests by DMA devices forusing the bus are always given higher priority than processor
requests. Among different DMA devices, top priority is given to high-speed peripherals
such as a disk, a high-speed network interface, or a graphics display device. Since the
processor originates most memory access cycles, the DMA controller can be said to
“steal” memory cycles from the processor. Hence, this interweaving technique is usu-
ally called cycle stealing. Alternatively, the DMA controller may be given exclusive
access to the main memory to transfer a block of data without interruption. This is
known as block or burst mode.)

Most DMA controllers incorporate a data storage buffer. In the case of the network
interface in Figure 4.19, for example, the DMA controller reads a block of data from
the main memory and stores it into its input buffer. This transfer takes place using burst
mode at a speed appropriate to the memory and the computer bus. Then, the data in the
buffer are transmitted over the network at the speed of the network.

A conflict may arise if both the processor and a DMA controller or two DMA

controllers try to use the bus at the same time to access the main memory. To resolve
these conflicts, an arbitration procedure is implemented on the bus to coordinate the
activities of all devices requesting memory transfers.

4470 BUN ARBIVRATION

The device that is allowed to initiate data transfers on the bus at any given time is
called the bus master. When the current master relinquishes control of the bus, another
device can acquire this status. Bus arbitration is the process by which the next device to
become the bus master is selected and bus mastership is transferred to it. The selection
of the bus master must take into account the needs of various devices by establishing a
priority system for gaining access to the bus.

There are two approaches to bus arbitration: centralized and distributed. In central-
ized arbitration, a single bus arbiter performs the required arbitration. In distributed
arbitration, all devices participate in the selection of the next bus master.

Lentralized Arbiomation

The bus arbiter may be the processor or a separate unit connected to the bus.
Figure 4.20 illustrates a basic arrangement in which the processor contains the bus
arbitration circuitry. In this case, the processor is normally the bus master unless it
grants bus mastership to one of the DMA controllers. A DMA controller indicates
that it needs to become the bus master by activating the Bus-Request line, BR. This is
an open-drain line for the same reasons that the Interrupt-Request line in Figure 4.6
is an open-drain line. The signal on the Bus-Request line is the logical OR of the
bus requests from all the devices connected to it. When Bus-Request is activated, the
processor activates the Bus-Grant signal, BG1, indicating to the DMA controllers that
they may use the bus when it becomes free. This signal is connected to all DMA
controllers using a daisy-chain arrangement. Thus, if DMA controller 1 is requesting
the bus, it blocks the propagation of the grant signal to other devices. Otherwise, it
passes the grant downstream by asserting BG2. The current bus master indicates to all

237

238

CHAPTER 4 + INPUT/OUTPUT ORGANIZATION

BBSY
BR
Processor
DMA DMA
controller controller }—
BG1 1 BG2 2

Figure 4.20 A simple arrangement for bus arbitration using a daizy
chain.

BR | ij

BGl

—— Time

)
L

BBSY

Bus
master

Processor DMA controller 2 Processor

Figure 4.21 Sequence of signals during transfer of bus mastership for the devices in
Figure 4.20.

devices that it is using the bus by activating another open-collector line called Bus-
Busy, BBSY. Hence, after receiving the Bus-Grant signal, a DMA controller waits
for Bus-Busy to become inactive, then assumes mastership of the bus. At this time, it
activates Bus-Busy to prevent other devices from using the bus at the same time.

The timing diagram in Figure 4.21 shows the sequence of events for the devices in
Figure 4.20 as DMA controller 2 requests and acquires bus mastership and later releases
the bus. During its tenure as the bus master, it may perform one or more data transfer
operations, depending on whether it is operating in the cycle stealing or block mode.
After it releases the bus, the processor resumes bus mastership. This figure shows the
causal relationships among the signals involved in the arbitration process. Details of
timing, which vary significantly from one computer bus to another, are not shown.

Figure 4.20 shows one bus-request line and one bus-grant line forming a daisy
chain. Several such pairs may be provided, in an arrangement similar to that used

4.4 DRECT MEMORY ACCESS

for multiple interrupt requests in Figure 4.8b. This arrangement leads to considerable
flexibility in determining the order in which requests from different devices are serviced.
The arbiter circuit ensures that only one request is granted at any given time, according
to a predefined priority scheme. For example, if there are four bus request lines, BR1
through BR4, a fixed priority scheme may be used in which BR1 is given top priority
and BR4 is given lowest priority. Alternatively, a rotating priority scheme may be used
to give all devices an equal chance of being serviced. Rotating priority means that after
a request on line BRI is granted, the priority order becomes 2, 3, 4, 1.

Distributed Arbitration

Distributed arbitration means that all devices waiting to use the bus have equal
responsibility in carrying out the arbitration process, without using a central arbiter. A
simple method for distributed arbitration is illustrated in Figure 4.22. Each device on
the bus is assigned a 4-bit identification number. When one or more devices request
the bus, they assert the Start-Arbitration signal and place their 4-bit ID numbers on
four open-collector lines, ARBO through ARB3. A winner is selected as a result of the
interaction among the signals transmitted over these lines by all contenders. The net
outcome is that the code on the four lines represents the request that has the highest ID

number.

' The drivers are of the open-collector type. Hence, if the input to one driver is equal
to one and the input to another driver connected to the same bus line is equal to 0 the

T ARB3
ARB2
ARBI
ARB0

Start-Arbitration

AlA A= 77
AT Y]y

LRI LRE o |11t

Interface circuit *
for device A

Figure 422 A distributed arbitration scheme.

239

CHAPTER 4 + INPUT/OUTPUT ORGANIZATION

bus will be in the low-voltage state. In other words, the connection performs an OR
function in which logic 1 wins.

Assume that two devices, A and B, having ID numbers 5 and 6, respectively,
are requesting the use of the bus. Device A transmits the pattern 0101, and device B
transmits the pattern 0110. The code seen by both devices is 011 1. Each device compares
the pattern on the arbitration lines to its own ID, starting from the most significant bit.
If it detects a difference at any bit position, it disables its drivers at that bit position and
for all lower-order bits. It does so by placing a 0 at the input of these drivers. In the
case of our example, device A detects a difference on line ARB1. Hence, it disables
its drivers on lines ARB1 and ARBO. This causes the pattern on the arbitration lines to
change to 0110, which means that B has won the contention. Note that, since the code
on the priority lines is 0111 for a short period, device B may temporarily disable its
driver on line ARBO. However, it will enable this driver again once it sees a 0 on line
ARBI resulting from the action by device A.

Decentralized arbitration has the advantage of offering higher reliability, because
operation of the bus is not dependent on any single device. Many schemes have been
proposed and used in practice to implement distributed arbitration. The SCSI bus de-
scribed in Section 4.7.2 provides another example.

4.5 Brags

The processor, main memory, and I/O devices can be interconnected by means of a
common bus whose primary function is to provide a communications path for the
transfer of data. The bus includes the lines needed to support interrupts and arbitration.
In this section, we discuss the main features of the bus protocols used for transferring
data. A bus protocol is the set of rules that govern the behavior of various devices
connected to the bus as to when to place information on the bus, assert control signals,
and so on. After describing bus protocols, we will present examples of interface circuits
that use these protocols.

The bus lines used for transferring data may be grouped into three types: data,
address, and control lines. The control signals specify whetheraread or a write operation
is to be performed. Usually, a single a R/W line is used. It specifies Read when set to 1
and Write when set to 0. When several operand sizes are possible, such as byte, word,
or long word, the required size of data is indicated.

The bus control signals also carry timing information. They specify the times at
which the processor and the /O devices may place data on the bus or receive data
from the bus. A variety of schemes have been devised for the timing of data transfers
over a bus. These can be broadly classified as either synchronous or asynchronous
schemes.

Recall from Section 4.4.1 that in any data transfer operation, one device plays the
role of a master. This is the device that initiates data transfers by issuing read or write
commands on the bus; hence, it may be called an initiator. Normally, the processor acts
as the master, but other devices with DMA capability may also become bus masters.
The device addressed by the master is referred to as a slave or target.

